Everybody’s gangsta until you invert

Prijatelj Bruno Gašperov i ja imali smo raspravu oko jednog YouTube videa, točnije jedne slike koja je u njemu prikazana, a navodno oslikava inverz:

Bruno je primijetio da ovaj meme zapravo ne predstavlja inverz funkcije. Štoviše, on nema nikakve veze s inverzom. Što je na prvoj slici x, a što f? Je li riba x a mačka f()? Onda je f preslikavanje x -> pojedeni x, pa bi inverz trebalo biti nešto što pojedeni x vraća u x. Dakle, na drugoj slici bi trebalo biti nešto što pojedenu ribu pretvara u originalnu. Zapravo je povraćanje inverz, zaključio je Bruno.

Odgovorio sam da on želi prikazati f^{-1}(y), ali da slika prikazuje f^{-1}(x). Bruno je zaključio da to baš i nema smisla. Ako je f nešto što neki objekt pretvara u pojedeni objekt, onda je f^{-1} nešto što pojedeni objekt pretvara u nepojedeni. Domena od f su nepojedeni objekti, kodomena pojedeni. f^{-1} nije definiran na elementu domene, tj. na x. Dakle, f^{-1}(riba) ne postoji.

A čak i ako shvatimo da f^{-1}(riba) postoji, objašnjavao je Bruno, f^{-1} i dalje undo-a čin jedenja. Onda bi f^{-1}(riba) (za nepojedenu ribu) bio neki z koji, kad ga pojedeš, dobiješ nepojedenu ribu. Možda neka riba u ovojnici?

Složio sam se i zaključio da slika zapravo ne opisuje inverz nego reverse, okretanje poretka (mačka jede ribu -> riba jede mačku). Ali onda sam krenuo razmišljati može li se slika ipak nekako shvatiti tako da ima smisla kao inverz, tj. postoji li neko drugo, pametnije tumačenje što je x, a što je f. Pasivno razmišljajući dvadesetak minuta uz zujanje i kavu, nakon nekoliko krivih ideja, našao sam odgovarajuće tumačenje.

Ako je f(x) = onaj tko jede x, onda je na prvoj slici f(riba) = macka. To znači da je f^{-1}(macka) = riba. I onda druga slika prikazuje f^{-1} kao što prva prikazuje f!

Neovisno o dojmu da je takav f malo neprirodan, Bruno je primijetio da je onda čudno da je druga slika, koje prikazuje f^{-1}(x), tj onog koga jede x, vizualizirana na isti način. Bilo bi smislenije da je druga slika identična prvoj. Za drugu sliku treba biti f^{-1}(macka)=riba, što znači da mačka jede ribu, no na slici riba jede mačku. Na toj slici, dakle, “biti pojeden” su vizualizirali kao “jede” što nema baš smisla.

Odgovorio sam da nije tako nelogično ako shvatimo na sljedeći način. Za početak zaboravimo ikakvo jedenje i samo definirajmo f(riba)=macka, dakle f^{-1}(macka)=riba. Dalje uzmimo da slika vizualizira proizvoljnu funkciju na način da stavi x u usta onoga u koga se on preslikava. I sad jednostavno prva slika vizualizira f, a druga f^{-1}. Kao graf! Je li graf funkcije sinus identičan grafu njenog inverza (arcsin)? Ovdje je analogna situacija.

Bruno odgovara da onda relacija jedenja oslikana na slici zapravo samo indicira što je x a što je y, a ne govori ništa o samoj funkciji f. Nisam se baš složio: indiciranje što je x a što y jednoznačno opisuje funkciju. Funkcija nije drugo nego skup parova x, f(x). Slika prikazuje taj skup, točnije, jedan njegov dio. Govori nam o jednom paru x \to y (riba i mačka). Možda ih ima još, možda nema.

Bruno je ponovio prigovor od ranije. Ako je f(riba) = macka, onda je f^{-1}(macka)=riba. f(x) je onaj tko jede x, f^{-1}(x) je onaj koga jede x. Problem je što f(x) i f^{-1}(x) nisu vizualizirane na isti način. Trebale bi biti ista slika!

Odlučio sam se bolje izraziti. Zapravo, nije točno da je f(x) onaj tko jede x. Nego samo na slici vrijedi da je za funkciju na slici f(x) onaj koji jede x. Jedenje je samo vizualizacija neke funkcije koja sama po sebi neme veze s jedenjem. Isto kao što sinus nije “valovit” sam po sebi nego tek kad mu nacrtaš graf u Kartezijevoj ravnini. U tom smislu, f i f^{-1} jesu vizualizirane na isti način i sve je smisleno. Primjerice, “9 jede 3” bila bi analogna slika koja vizualizira kvadriranje, a “3 jede 9” korjenovanje i ništa nije čudno.

Bruno je shvatio. Dakle, imamo neku funkciju koja preslikava x (ribu) u y (mačku), i ta funkcija je (sasvim slučajno) prikazana tako da y jede x (mogli smo prikazati i kao da y pije x ili nešto treće). Jedenje samo indicira što je element domene x (jedeno), a što odgovarajući element kodomene y (jedač). I onda na drugoj slici želimo nacrtati inverz i stavimo obrnuto, da x (riba) jede y (mačku) jer su sad domena i kodomena obrnute. (Kao u slučaju grafova sinusa i arcsinusa.) I u tom smislu relacija jedenja ništa ne govori o samoj funkciji f jer smo funkciju mogli vizualizirati i nekom drugom relacijom, već je proizvoljno odabrana ta relacija da poveže element domene i kodomene. Slika je samo oznaka.

Bruno je onda predložio bolji meme za inverz:

… jer sad ne moramo toliko apstraktno ići, u skladu je sa slikama. f(x) je dobiti na lutriji, f^{-1}(x) potrošiti novac u kockarnici.

Komentirao sam da bih ovaj cijeli razgovor (u ispoliranom obliku) volio staviti na Blogaritam. (Ovaj meme na kraju, doduše, može se doimati politički nekorektnim. Kao, muškarac dobiva novac, a žena ga spiska. No dobro je što muškarac na slici nije zaradio novac, nego dobio na lutriji, pa ne ispada da muškarac zarađuje za ženu.)

Za kraj, Bruno je primijetio da autor originalnog memea sigurno nije imao našu interpretaciju na umu. On je zabrijao, ali ipak je dobro ispalo. Kao kad izgovorite nešto glupo, ali to iz nekog razloga na koji niste računali ispadne duhovito pa slučajno impresionirate ljude. Događalo mi se nekoliko puta.

Statistika i (neki) statističari

COVID! Napokon nešto o Covidu! Aaaaa! Prije mjesec dana pojavio se kontroverzni preprint (preprint znači znanstveni članak koji tek treba proći recenziju i biti prihvaćen za objavljivanje u časopisu) među čijim je autorima nekoliko naših znanstvenika (između ostalih Alemka Markotić, Dragan Primorac i Gordan Lauc). Ugrubo, članak na temelju određenih podataka o europskim pacijentima zaključuje da je ljetni covid manje opasan od zimskog. Kontroverzan je zato što je, s jedne strane, dobio dosta medijskog publiciteta i u nas i u inozemstvu, a s druge strane kritike od izvrsnog mladog znanstvenika Jana Homolaka i njegovih suradnika. Oni su kritizirali statističke metode kojima su Lauc i ekipa iz podataka došli do odgovarajućih zaključaka. Statistika nije moje područje pa toj raspravi (koja se proširila na Twitter i Facebook) ne mogu doprinijeti, osim ovakvim dijeljenjem koje nas, ako ništa drugo, može zainteresirati i dati dobar uvid u znanstvenu metodologiju.

A statističari bi ovu priču mogli rasvijetliti, te iz gomile složenih podataka koje je moguće tumačiti na tisuću načina izvući uzročno-posljedične veze. Statistikom se inače bavi naš prvi zlatni IMO-vac Domagoj Ćevid, a o nekim zanimljivostima govorio je ovdje (ako vas zanima više, poslušajte cijeli intervju).

Nedavno sam čitao o jednoj pogrešnoj, a nažalost vrlo utjecajnoj statistici. Krajem prošlog stoljeća istraživanja su (ugrubo) kazivala da ljudi koji piju prosječno 1-2 alkoholna pića dnevno imaju najbolje zdravlje, točnije, bolje od onih koji piju više ili ne piju ništa. Takav narativ svakako je poticao konzumaciju alkohola, no on je pogrešan:

But there was a problem with many of these studies: They compared drinkers to non-drinkers (…). And people who don’t drink are pretty fundamentally different from drinkers in ways that are hard to control for in a study. Their lives probably look dissimilar. Most importantly, they may be sicker at baseline (perhaps they quit drinking because of alcoholism, or because of a health issue like cancer). And something in these differences — not their avoidance of alcohol — may have caused them to look like they were in poorer health than the moderate drinkers. (This became known as the “sick quitter” problem in the world of alcohol research.)

Matematičarima je to možda strano, ali u znanosti (nažalost) ključnu demonstrativnu ulogu igraju eksperimenti i njihova analiza. U računarstvu, gdje se u znanstvenom radu obično predlaže neki algoritam, model, metoda ili protokol, eksperiment se sastoji od testiranja ili simulacije predložene metode na odabranim testnim podatcima, pri čemu je često važna usporedba s alternativnim, postojećim metodama. U medicini ili psihologiji eksperimenti se rade na ljudima koji se dijele na ove ili one skupine i moguće je pogriješiti na stotinu načina – što u izvedbi eksperimenta, što u tumačenju rezultata. Jedno od najvažnijih svojstava je ponovljivost, što znači: ako neki drugi istraživač neovisno izvede isti eksperiment, morao bi dobiti vrlo slične rezultate. Ovdje je zanimljivo da je 2015. godine provedena studija koja je pokušala replicirati razne rezultate prethodnih psihologijskih istraživanja, nažalost s razočaravajućim rezultatima.

Čovjek bi rekao da je u matematici provjera najlakša, jer riječ je o egzaktnoj znanosti – dokaz ili je ispravan, ili ima grešku u zaključivanju i ozbiljni matematičari (gotovo) uvijek će se međusobno složiti jer logika govori sama za sebe. Nekad je tu grešku lako detektirati – godišnje se pojavi stotinjak amaterskih “rješenja” velikih matematičkih problema poput dokaza da je P ≠ NP. Ipak ima i slučajeva kada su i najozbiljniji matematičari u nesuglasju, no takvi slučajevi vrlo su rijetki. O jednom od njih pisao sam u postu Matematika i (neki) matematičari.

Ljetna poslastica: dvadeset i jedan (“židovski”) matematički zadatak

Najprije mala digresija, naime, zašto sam napisao dvadeset jedan umjesto 21? Zato što ovo drugo nije u duhu jezika. U kontekstu formula je naravno drugačije, ali u običnom tekstu nije; pokušajte zamisliti npr. Šenou, Krležu ili nekog pjesnika da ima znamenke u rečenici. Ružno je! Kao što bi rekao Goran Bare: “Tko razumije, razumije. Tko ne razumije, neće nikad ni razumjeti!” (Ako koga zanima, to je rekao na 0:45 na ovom koncertu.)

Jučer sam naletio na zanimljiv članak sa zadatcima s prijamnih ispita moskovskog matematičkog fakulteta. Članak se zove Jewish Problems jer je riječ o malo težim zadatcima koje su na usmenom ispitu postavljali židovskim kandidatima koje očito nisu naročito voljeli:

“Among problems that were used by the department to blackball unwanted candidate students, these problems are distinguished by having a simple solution that is difficult to find. Using problems with a simple solution protected the administration from extra complaints and appeals.”

Malo sam škicnuo rješenja i čini se da nisu sva baš tako kratka i jednostavna, ali izgleda da su zadatci odlični. Ono što je osobito dobro jest da prije poglavlja Solutions postoji poglavlje Ideas koji sadrži hintove za sve zadatke. To je odlična praksa! Kad sam se ja natjecao, u materijalima toga uglavnom nije bilo. Možda je sad drugačije, ali ako nije, svakako treba biti.

I za kraj, što drugo mogu nego preporučiti knjigu AHA! Matije Bašića! Pod uvjetom da se na ovoj vrućini ne razlijemo po kaučima i mozak nam ne postane toplo varivo.

Male tajne velikih brojeva

O nuli sam već pisao u postu I nula je broj. Ondje nisam spomenuo jedno zanimljivo svojstvo nule o kojemu ću sada govoriti, a bez kojeg matematički doživljaj ovog broja ne bi bio potpun.

Poanta nule nije u ništavilu, nego u potencijalu. Recimo, ako imam slobodan dan ili dio godišnjeg odmora s nula obaveza i planova, dakle, ako uopće ne znam kako ću ga provesti, osjećam se izvrsno jer potencijalno dopuštam svemu da se dogodi. John C. Parkin napisao je: “All things manifest from nothing. Leave space, lots of space, in your life.” Toga je bio svjestan i naš poznati matematičar Vladimir Devidé kada je ovako komentirao sljedeću japansku haiku pjesmu:

Koliba u proljeće:
ničega u njoj –
u njoj je sve!

(Sodō, 1642. – 1716.)

“Pročitavši to, bio sam kao ošinut. U proljeće, kad se sve budi, eto prazne kolibe koja upravo time što je prazna omogućava da sve uđe u nju, upravo ga zove. Nema ničega, nikakvih nepotrebnih stvari koje bi to priječile. Svo bujanje proljeća puni praznu kolibu svojim beskrajnim bogatstvom.”

Poanta minimalizma nije u redukciji broja stvari, nego u činjenici da oslobađanjem od suvišnih stvari ostavljamo mjesta za nove stvari. Recimo, jednom sam riješio jednadžbu tako što sam odlučio da je uopće neću riješiti. Neke sam knjige namjeravao pročitati, ali taj sam problem riješio odlukom da ih uopće neću pročitati. Idealno matematičko predavanje bilo bi ono u kojemu se ne bi govorilo o ničemu. Mnoge stvari u životu unaprijed su riješene odlukom da ih neće biti.

U sličnom smjeru ide i sljedeća ideja: možda je bolje kupiti ručni sat nego, recimo, gitaru ili bicikl. Naime, gitaru treba svirati, bicikl treba voziti, a sat radi sam od sebe: on uzima nula vremena i kao takav daje sve vrijeme svijeta! Nastavimo li ovako zaključivati, možda je još bolje kupiti zidnu sliku jer ona traži još manje od sata (ne treba je ni nositi na ruci). Potom, još je bolja neka stvar koju uopće ne možemo kupiti jer s njom ne moramo baš ništa, ni kupiti je ni išta s njom činiti. A najbolja je ona stvar za koju uopće ne znamo da postoji, jer onda ni ne znamo da s njom ne moramo ništa. Eto, to je poanta nule, to je poanta slobode i to je poanta godišnjeg odmora.

Dokaz ostavljamo čitateljici za vježbu

U opisima algoritama, koji su dio objavljenih rješenja većine domaćih natjecanja, nerijetko se na kraju opisa rješenja pojedinog zadatka pojavljuje rečenica “Dokaz točnosti algoritma ostavljamo čitatelju za vježbu”. Ili čitateljici, da ne bi tko pomislio da autori imaju predrasude. Tako smo u rješenjima Studentskog 2018. u čak tri zadatka ostavili dokaz točnosti ili efikasnosti algoritma za vježbu upravo čitateljici.

Navedena rečenica nije karakteristična samo za opise algoritama, ona se često viđa i u matematici i sličnim znanostima. No koje je njezino pravo značenje?

Iz iskustva, rečenica može imati tri moguća značenja:

  1. Dokaz ostavljamo čitatelju za vježbu jer je točnost ili efikasnost algoritma, ako se on čita s razumijevanjem i ako se o njemu malo promisli, prilično očita i dokaz je bolje izostaviti da bi čitatelj malo zastao i razmislio o pročitanom. (Ovo je slučaj u zadatku Stablo u stablu sa spomenutog Studentskog.)
  2. Dokaz ostavljamo čitatelju za vježbu jer smo u se u točnost tvrdnje uvjerili intuitivno, a znali bismo je i dokazati, ali dokaz nije lako ukratko napisati i vjerojatno bi bio ružnjikav. (Ovo je slučaj u zadatku Ploča sa spomenutog Studentskog, kao i npr. u zadatku Sails – IOI 2007.)
  3. Dokaz ostavljamo čitatelju za vježbu jer tvrdnju ne znamo sami dokazati. (Ovo je slučaj u zadatku Načitan sa spomenutog Studentskog za neparan N, a skoro je bio slučaj i u zadatku GTA s Izbornih priprema 2014.)

Postoji i četvrti slučaj – autor rješenja izostavlja ne samo dokaz, nego i navedenu rečenicu, praveći se da je sve jasno, iako nije. Krunski primjer je zadatak Mravograd (Državno 2007.) koji je poznat po kratkom i lijepom rješenju za koje nije očita ni točnost, a pogotovo efikasnost tj. složenost algoritma. Do ključne zamjedbe dolazi se određenim koracima u razmišljanju koji su u službenom opisu izostavljeni. Drugim riječima, rješenje nije napisano metodički. No budući da se radi o zadatku za malo jaču publiku, autor (Luka Kalinovčić, ako se ne varam) nije nas podcijenio: čitatelji (i čitateljice, naravno) sposobni su sami ispuniti rupe u rješenju. A ta je rupa generiranje slučajnih primjera i promatranje u kojim se oblicima pojavljuju traženi “mokri trgovi”. Odatle se dolazi do tražene ideje.

U praksi je, dakle, i empirijski dokaz često dovoljan. Ionako u implementaciji griješimo češće nego u ideji. Testiranje rješenja usporedbom sa brute-forceom i generatorom slučajnih primjera u praksi je odličan dokaz. (To zaboravljaju neki natjecatelji naviknuti na online evaluatore i full feedback i onda griješe na županijskom ili HONI natjecanju.) Nedavno je Errichto pisao o jednom manje uobičajenom načinu testiranja. Ja sam je iskoristio nedavno, kada sam za zadatak Dionice (autora Domagoja Bradača) s ovogodišnjeg županijskog natjecanja pisao rješenje radi provjere. Nisam htio implementirati potpuno isti algoritam kao Domagoj (jer što ako je slučajno pogrešan), nego sam odlučio zadani niz gledati unatrag i primijeniti analogan algoritam u obrnutom smjeru. Dobio sam iste rezultate, što je empirijski potvrdilo točnost algoritma. Domagoj je doduše napisao dokaz, ali kao što ovaj odlomak sugerira, matematički dokaz nikad nije dovoljan jer ljudi griješe (zabrijavaju). U matematici se stvari dokazuju, a u drugim znanostima (kao i u životu) stvari se testiraju.

Dakle, pravo značenje rečenice “Dokaz ostavljamo čitatelju za vježbu” upravo je ono koje čitatelj svjesno ili nesvjesno percipira čim pročita tu rečenicu. Ono glasi: “Formalni dokaz nije bitan”. Bitno je da se čitatelj na ovaj ili onaj način uvjeri u istinitost tvrdnje. Primjerice, ako želimo podijeliti prirodne brojeve A i B tako da količnik zaokružimo na više, možemo ga dobiti kao (A + B – 1) div B. Na jednoj radionici nije mi se dalo objašnjavati zašto je tako pa sam rekao “dokažite za domaću zadaću”. Naravno, nisam očekivao da itko to formalno dokaže koristeći najveće cijelo i nejednakosti. U ovom slučaju dovoljno se uvjeriti na primjerima promatrajući nekoliko bitnih slučajeva. Dokazivanje je samo formalizacija intuicije, iako je taj stav općenito diskutabilan. Razmislite o njemu sami, za vježbu.

Digresija: Dedekindovi brojevi

Na koliko načina možemo svakom broju iz skupa S = {1, 2, …, N} pridružiti 0 ili 1? Drugim riječima, koliko ima funkcija iz S u {0, 1}?

Well, that’s easy – dvije mogućnosti za 1, puta dvije mogućnosti za 2, puta dvije mogućnosti za 3, i tako dalje, ukupno 2^N.

Idemo dalje: na koliko načina možemo svakom podskupu od S pridružiti 0 ili 1? Drugim riječima, koliko ima funkcija iz skupa svih podskupova – partitivnog skupa P(S) u {0, 1}?

Analogno prethodnome, to je 2^K gdje je K broj podskupova, jer za svaki podskup biramo 0 ili 1. A koliki je K? Podskup kreiramo tako da svaki broj u njega stavimo ili ne stavimo (dvije mogućnosti), dakle K = 2^N. Traženih je funkcija, dakle, 2^{2^N}.

Idemo dalje…

Na koliko načina možemo svakom podskupu od S pridružiti vrijednost 0 ili 1, ali tako da dodavanjem elemenata u podskup njegova vrijednost može samo porasti? Drugim riječima, koliko ima monotonih funkcija f : P(S) \to \{0, 1\}, što znači da je f(A)\le f(B) za sve A\subset B?

Nemamo pojma, ali na prvi pogled možemo brutati, tj. napisati program koji ovo prebraja za dovoljno mali N. Što mislite, koliko mali?

Riječ je o N-tom Dedekindovom broju, a ono što je fascinantno je da već za N = 9 nitko nije uspio izračunati taj broj. Postoji formula, ali ona nije zatvorena, tj. sadrži sumaciju pa u suštini i nije formula nego spori pseudokod.

Osmi Dedekindov broj izračunat je još 1991. godine i to uz pomoć pametnih trikova za smanjenje složenosti. Osim u izvornom članku, taj algoritam možete pronaći i ovdje. Iako su se od tada računala ubrzala stotinu i više puta, deveti Dedekindov broj još uvijek je nedohvatljiv. A ima 40ak znamenaka, prava sitnica. Evo vam prilike da se upišete u povijest matematike.

Čini mi se da trenutačno znanje o Dedekindovom problemu nije dovoljno da bi se osmislio dovoljno efikasan algoritam za N = 9, ma koliko ga pametno optimizirali. Potrebna je nova spoznaja o samom problemu, neki novi teorem koji će omogućiti pojednostavljenje formule.

Ok, so what? Ima mnogo neriješenih problema u matematici; zašto sam baš o ovome pisao? Zato što izgleda rješiv (naglasak je na izgleda, a ne na rješiv :)) i zato što, čini mi se, trenutačno ne zanima ozbiljne matematičare pa konkurencija nije jaka. Ako nas dvadeset navali na problem, dovoljno je da svatko izračuna samo dvije ili najviše tri znamenke. Računala će se još ubrzati, a iskustvo nas uči da zadatak s ograničenjem N ≤ 10 ne može biti težak.

Digresija: matematika i (neki) matematičari

Prekjučer se pojavio zanimljiv članak o nesporazumu nekolicine velikih matematičara o tome je li Japanac Shinichi Mochizuki dokazao ABC hipotezu ili nije, a budući da jedan od sudionika te priče ima veze s matematičkim natjecanjima i jednom sam ga prilikom upoznao, došlo mi je napišem ovaj post.

Ne razumijem se u područje nimalo, ali koliko sam shvatio, Mochizukijev dokaz u četiri rada na ukupno 500 stranica ne razumije nitko osim samog Mochizukija; riječ je o novoj teoriji koja uvodi hrpu novih koncepata te osim ABC hipoteze rješava još neke otvorene probleme. Ozbiljni matematičari možda bi ignorirali takve nastranosti da Mochizuki i sam nije ozbiljan matematičar s prethodnim značajnim rezultatima. Ovako je privukao pažnju 30-godišnjeg matematičara Petera Scholzea koji je zajedno sa svojim kolegom Jakobom Stixom u ožujku otputovao u Kyoto da bi Mochizukiju objasnio zašto mu dokaz ne valja, na što je Japanac odgovorio da oni ništa ne kuže.

Peter Scholze nije bilo tko, on je dobitnik Fieldsove medalje, “matematičkog nobela”. Prije deset godina potražio sam ga na IMO-u 2008. (tada je vodio njemački tim) jer je prethodnih godina bio iznimno uspješan natjecatelj. Kad sam ga pitao postoji li osoba koja može riješiti bilo koji zadatak koji se pojavi na IMO-u ili Shortlistu, rekao je da je on takva osoba, ali to nije rekao hvalisavim ili ponosnim tonom. Također mi je rekao da, kad se pripremao za natjecanja, uglavnom nije čitao rješenja nego bi zadatak koji ne zna riješiti uvijek ostavljao za poslije.

Suprotnu stvar rekao mi je još uspješniji IMO-vac Iurie Boreico, osvajač nekoliko perfect scoreova na IMO-u i posebne nagrade za rješenje nejednakosti na IMO-u 2005. Njega nisam upoznao, ali sam ga bio kontaktirao na MSN-u (messenger iz nekih davnih vremena). On mi je tada savjetovao da, barem u početku, bez pardona čitam rješenja zadataka koje ne znam riješiti. Zanimljivo. Ne sjećam se svega, no možda je taj savjet bio u kontekstu mog početništva, jer tada još nisam bio IMO-vac.

Kome je bolje vjerovati? Vjerojatno osvajaču Fieldsove medalje. Uz Iuria se vežu neke zanimljivosti, npr. to da je trenutačno “Algorithmic Trader at Jump Trading LLC” (info s LinkedIna). Dakle, jedan ima više para, drugi je veća faca, ali obojica su legende.